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EFFECT OF FLUID VISCOSITY ON THE DECAY OF SMALL DISTORTIONS

OF A GAS BUBBLE FROM A SPHERICAL SHAPE

UDC 534.2:532A. A. Aganin,1 M. A. Il’gamov,2 and D. Yu. Toporkov1

The region of application of approximate methods for describing the effect of viscosity on the decay
of small distortions of a gas bubble from a spherical shape is refined by comparing solutions obtained
using the approximate methods and the exact Prosperittimodel. Approximate methods corresponding
to a number of limiting cases are considered. The features of the errors arising in descriptions of the
evolution of the distortions using approximate methods are found in the case of a significant effect
of rotational fluid flow. A new approximate method is proposed.
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Introduction. Until recently, in problems of bubble dynamics with small distortions from a spherical shape,
the effect of fluid viscosity in relation to its effect within the framework of the Navier–Stokes equations has been
taken into account approximately. In particular, this has been implemented using the solution of the problem of
decay of distortions in a spherical symmetric field of mass forces [1, 2]. A similar description of the viscosity effect
is obtained under the assumption that the effect of fluid flow vorticity is manifested only in the surface layer [3].
Approximate methods for describing the viscosity effect are not always applicable. Their use is problematic, for
example, in studies of single bubble sonoluminescence (SBSL) [4]. The SBSL phenomenon is the periodic emission of
short light pulses by a gas bubble which performs radial oscillations in the current antinode of an ultrasonic standing
pressure wave [4]. The discovery of the SBSL phenomenon in 1990 has stimulated research of distortions of micron-
size bubbles from a spherical shape. The smaller the bubble size, the greater the viscosity effect. Therefore, in
studies of SBSL, use has been made of the so-called exact method of accounting for viscosity [5] and a number of
approximate method based on it [6, 7]. The method of accounting for viscosity in accordance with [5] is called exact
in the sense that in the case of small distortions, it is equivalent to allowing for viscosity within the framework of
the Navier–Stokes equations.

It is of interest to study whether the exact method of accounting for viscosity [5] can be replaced by an
approximate method because the exact method is mathematical much more complicated than approximate methods
[1–3, 6, 7] although it is much simpler than accounting for viscosity within the framework of the Navier–Stokes
equations.

The exact method of accounting for viscosity [5] was used to study the decay of oscillations of the bubble
shape. Thus, Asaki and Marston [8] studied the decay of nonspherical oscillations of bubbles which were acoustically
trapped in fresh water and sea water. Roberts and Wu [9] give an asymptotic solution for the magnitude of distortion
for large values of the free decay time. A number of asymptotic solutions were obtained in [10] using the Laplace
transformation.

The goal of the present paper is to refine the region of application of the approximate methods of describing
viscosity by comparing solutions obtained by approximate methods and for the exact model [5].
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1. Formulation of the Problem. At the time t = 0, a bubble with a small deviation of the shape from
sphericity is in rest. Under the action of surface tension forces, the shape of the bubble begins to oscillate with an
amplitude decay with time due to friction forces. In spherical coordinates r, θ, and ϕ, the equation of the surface
is written as

F (r, θ, ϕ, t) = r −R(1 + aij(t)Y
j
i (θ, ϕ)) = 0.

Here R is the constant radius of the spherical component of the bubble shape, Y j
i is a spherical harmonic of degree i

and order j (−i � j � i). The parameter aij characterizes the dimensionless (referred to the radius R) deviation of
the surface from a sphere in the form Y j

i , whose amplitude is determined by its modulus |aij(t)| and whose direction
is determined by the sign of the product aijY

j
i (it is directed outward for aijY

j
i > 0 and inward for aijY

j
i < 0).

The deviation aij is considered small (|aij | � 1). The bubble gas is considered inviscid, and its density is much
smaller than the density of the fluid ρ0. The equation for aij is written as [5]

äij + 2(i+ 1)(i+ 2)βiȧij + (i+ 1)2(i+ 2)2aij + i(i+ 1)βi(Tij(1, τ) − 2(i+ 1)αij) = 0, (1.1)

where

βi =
(i+ 1)(i+ 2)ν

ωiR2
, ω2

i =
σ

ρ0R3
(i2 − 1)(i+ 2); αij =

∞∫

1

Tij(ξ, τ)
dξ

ξi
,

ξ = r/R, τ = tω∗
i , ω∗

i = ωi(i+1)−1(i+2)−1, σ is the surface tension coefficient, ν = µ/ρ0, µ is the dynamic viscosity,
and βi is an analog of the Reynolds number [11], in which the viscosity effect is characterized by the parameter
(i+1)(i+2)ν and the characteristic velocity ωiR is the maximum (in θ) radial velocity of the fluid u on the bubble
surface in the case where the oscillation frequency is aij = 1. It is assumed that ∇ × u|τ=0 = 0; as a result, the
rotational motion is toroidal and the function Tij(ξ, τ) is defined by the expression ∇×u = ∇×TijRω

∗
i Y

j
i er, where

er is the unit vector of the axis r. The function Tij(ξ, τ) is obtained from the equation

∂Tij

∂τ
+ βi

( i(i+ 1)Tij

ξ2
− ∂2Tij

∂ξ2

)
= 0 (1.2)

subject to the boundary conditions

Tij(1, τ) = 2[(i+ 2)/(i+ 1)]ȧij − 2αij , Tij(∞, τ) = 0. (1.3)

At t = 0 we set ȧij(0) = 0, Tij(ξ, 0) = 0, and aij(0) = a0
ij .

The function Tij(ξ, τ) is of importance in the analysis of the rotational component of the fluid flow. First,
it determines the vorticity ∇× u = ω = Ωθeθ + Ωϕeϕ, where Ωθ = (Tij/(ξ sin θ)) ∂Y j

i /∂ϕ, Ωϕ = (Tij/ξ) ∂Y
j
i /∂θ,

and eθ and eϕ are the unit vectors of the θ and ϕ axes. Second, the effect of the rotational component of the fluid
flow is described by two terms of Eqs. (1.1) that depend on the function Tij(ξ, τ).

Equations (1.1)–(1.3) are obtained from the Navier–Stokes equations under the assumption that the distor-
tions of the bubble from a spherical shape are small [5]. The solution of system (1.1)–(1.3) is found numerically,
and below it is called exact.

2. Approximate Methods of Accounting for Viscosity. The spatial distribution of the vorticity (and,
hence, the quantity αij) ignoring the nonstationary nature of its diffusion is determined by its boundary value. In
this case, Tij(1, τ) depends on ȧij , as follows from (1.3). As a result, the effect of rotational fluid flow in (1.1)
degenerates into a certain correction of the coefficient at ȧij and for all approximate methods of describing the
viscosity effect ignoring the nonstationary diffusion of the fluid flow vorticity, the equation for aij can be written as

äij + 2(i+ 1)(i+ 2)βi(1 + Ci)ȧij + (i+ 1)2(i+ 2)2aij = 0, (2.1)

where a particular expression of Ci corresponds to each method.
The solution of Eq. (2.1) for aij(0) = a0

ij and ȧij(0) = 0 has the form

aij = a0
ij e−(i+1)(i+2)∆iτ cos

(
τ(i+ 1)(i+ 2)

√
1 − ∆2

i − ψ0

)
/
√

1 − ∆2
i for ∆i < 1, (2.2)

aij = a0
ij e−(i+1)(i+2)∆iτ

(
K1 eτ(i+1)(i+2)

√
∆2

i−1 +K2 e−τ(i+1)(i+2)
√

∆2
i−1

)
for ∆i > 1, (2.3)
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ψ0 = arccos
√

1 − ∆2
i , K1 =

∆i +
√

∆2
i − 1

2
√

∆2
i − 1

, K2 = −∆i −
√

∆2
i − 1

2
√

∆2
i − 1

, ∆i = (1 + Ci)βi.

Expression (2.2) describes the regime of decaying oscillations of the deviation, and expression (2.3) describes the
regime of its decrease without oscillations. The deviation decreases at the maximum rate without oscillations for
∆i = 1.

In the present study, we use the following approximate methods.
Method I [1–3]. It is assumed that ∂Tij/∂τ = 0 for ξ > 1, which follows from (1.2) as βi → 0. In this case, if

Tij(ξ, 0) = 0 (ξ > 1), then Tij(ξ, τ) = 0 for τ > 0. This implies that the energy losses in the formation of vorticity
on the bubble surface are taken into account and the opposite effect of rotational fluid flow on the bubble surface
is ignored. In (1.1), the energy losses are taken into account by the term dependent on Tij(1, τ). For a fixed i, the
accuracy of this method increases with decrease in ν and/or with increase in R since under these conditions the
fluid vorticity outside the bubble surface becomes less considerable. In the case of fixed ν and R, this method can
be used only for small i. Method I corresponds to Ci = i(i+ 1)−1.

The solution of the problem of free decay of distortions using method I was employed to describe viscosity
in a study [2] of high-frequency distortions of a radially oscillating bubble in a low-viscosity fluid. In this case, use

was made of the condition
√
i(−R3R̈+ σRi2) � 2νi2R2/R2

0, where R and R0 are the current and equilibrium radii
of the bubble. For R = const and i� 1, this condition is equivalent to the condition βi � (1 + Ci)−1.

Method II. This method uses the quasistatic solution of Eqs. (1.2): Tij(ξ) = Tij(1)ξ−i, which is valid for
βi → ∞, whence Ci = −3i(i+ 1)−1(2i+ 1)−1. The accuracy of this method increases for fixed i with increase in ν
and/or with decrease in R, and for fixed ν and R with increase in i. Under these conditions, the rate of vorticity
diffusion in the fluid becomes increasingly higher with respect to the rate of variation in its boundary value.

In [6], the effect of rotational fluid flow is evaluated by the expression αij = Tij(1, τ)δ. For the quasistatic
solution, we have Tij(1, τ) = 2Tij(1 + δ, τ). Then, Ci = −i(i+ 1)−2. In [6], the linearization of this relation is used:
Ci = −2(i+ 1)−1. These expressions correspond neither to the case of small values of βi (method I) nor to the case
of its large values (method II).

Method III. This method is a particular case of method II as i → ∞, so that Ci = 0. The accuracy of
method III, as well as that of method II, increases with increase in i for fixed values of ν and R. The equality
Ci = 0 corresponds to solution (1.1) for Tij(1, τ) − 2(i+ 1)αij = 0. The last relation implies that the energy losses
due to the formation of vorticity on the bubble surface are compensated for by the opposite effect of rotational fluid
flow. For any i, these losses are not equal to zero since the coefficient Ci of method I is in the range of 2/3 to 1.

The difference between methods I–III can be explained as follows. In method I, rotational fluid flow is ignored
and the energy losses due to the production of this flow are taken into account. The presence of vorticity diffusion
would reduce these losses due to both a decrease in the vorticity at the interface [the second term in (1.3)] and due
to the opposite effect of rotational flow on the variation in the deviation [the last term in (1.1)]. Because of the
greater consumption of the fluid flow energy, the rate of variation in the deviation will be smaller in describing the
viscosity effect by method I than by methods II and III, which take into account vorticity diffusion. In method III,
the energy consumption is greater than that in method II. This indicates that in method II, the rotational fluid flow
(here it is in essence a result of both the vorticity diffusion from the boundary of the bubble and shear motion in the
viscous fluid) always has higher energy than the energy expended for the production of vorticity at the interface.

Method IV. In this method, transition is performed from the region of small values of βi (method I) to
the region of large values (method II). As in [6], use is made of the estimate αij = Tij(1, τ)δ. For small βi, the
dependence δ(βi) is determined by solving the problem of decay of plane waves in a viscous fluid [11], and for large
βi, it is determined by the quasistatic solution of Eq. (1.2), so that

Ci =
i[1 − 2(i+ 1)δ]
(i+ 1)(1 + 2δ)

, δ = min

(√
βi

(i+ 1)(i+ 2)
,

1
2i− 1

)
. (2.4)

It is easy to see that as βi tends to zero and infinity, method IV approaches methods I and II, respectively.
3. Decay for a Weak Effect of Viscosity. The features of the decay of nonspherical oscillations of the

bubble for i = 2 and −2 � j � 2 for small values of the parameter β2 are illustrated in Fig. 1 for the case β2 = 0.096
(which corresponds, for example, to σ = 0.073 N/m, R = 4.5 · 10−6 m, ρ0 = 103 kg/m3, and ν = 0.5 · 10−6 m2/sec).
Time dependences of the quantity log |a2j/a

0
2j | obtained using the exact and approximate methods of accounting
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Fig. 2. Spatial distributions of the quantity Ωϕ/a0
2,0 along the line θ = π/4 for β2 = 0.096 for the

times indicated in Fig. 1 by points 1–9.

for viscosity are plotted at the top of the figure, and at the bottom there are time dependences of log |F/a0
2j |,

where F denotes the forces representing the second (Fσ), the third (Fviscos), and the fourth (Fvort) terms in (1.1).
In this case, Fσ characterizes the surface tension, Fviscos the effect of viscous friction (from irrotational fluid flow),
which is proportional to the velocity of the interface, and Fvort the effect of rotational fluid flow.

If the viscosity is taken into account exactly, the quantity a2j up to τ ≈ 4 oscillates with a slightly varying
period and with an amplitude decreasing almost exponentially. The center of these oscillations is a slightly non-
spherical shape (which is not evident in curve log |a2j/a

0
2j | but is apparent from the not purely exponential variation

in the oscillation amplitude Fvort). In the initial time interval, the bubble shape varies predominantly under the
action of the forces Fσ and Fviscos. The former force is markedly larger, which ensures the oscillation regime. Here
the force Fvort is smaller than Fviscos and plays the role of a complement of it. For τ ≈ 4, as the oscillations
the bubble shape are decaying, the force Fvort and Fσ become comparable. The bubble surface begins to perform
oscillations relative to a pronounced (compared to the oscillations amplitude) nonspherical shape with a shift of the
center of the oscillations of a2j to the region of values of the sign opposite to the initial one. The oscillations of the
surface proceeds first (4 < τ < 5.8) with transition through a spherical state and then (5.8 < τ < 8) without it. At
τ > 8, the deviation a2j decreases without oscillations under the power law τ−(i+1/2) = τ−5/2 [9].

Figure 2 shows the evolution of the rotational fluid flow for i = 2 and j = 0, when Ωθ = 0 (for j �= 0, the
picture is qualitatively the same). The figure gives distributions of Ωϕ/a

0
2,0 along the line θ = π/4 (here its values

are maximum for θ) at times t1−9 corresponding to a number of local maxima of the rate of variation in a2,0.
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According to Fig. 2a, before the time τ ≈ 4, the main perturbations in the vorticity field ω occur near the
bubble (in the near field of the fluid of length on the order of δ). In this period of time, they vary in an oscillation
regime with a decreasing amplitude. Their evolution is determined here by relatively high velocities of motion of
the bubble surface. The small phase shift in the variations of Fvort and Fviscos is due to a manifestation of the
fluid inertia in the near field. With time (for τ > 4 in Fig. 2b), the amplitude of perturbations of the vector ω

in the near field becomes comparable with the perturbation amplitude in a considerably more extended external
region (far field). At τ > 4, the oscillations of the bubble surface continue to influence only the variation in the
vector ω in the near field. The quantity ω in the far field and its effect on the bubble surface vary during the
entire process without oscillations and much more slowly than in the near field, namely under the law τ−5/2. The
remote and most extended part of the far field is formed as a result of the first (before the time τ1) and the fastest
oscillations. Therefore, the sign of Ωϕ/a

0
2,0 remains negative there throughout the process. The contribution of this

part of the far field to the quantity Fvort results in displacement of the center of oscillations of the force Fvort and,
hence, the center of oscillations of a2,0 to the region of negative values. The latter varies under a power law, and
the oscillations decay exponentially; therefore in a certain period of time, the maximum rate of variation in a2,0

and the rate of variation in the center of the oscillations become almost equal. As a result, the shape oscillations
cease and the deviation a2,0 slowly approaches zero under a power law.

In the example considered, method IV provided the best approximation of the exact solution (see Fig. 1).
For a successful choice of C2, as noted above, the rate of decaying of oscillations of a2j in the exact solution on
the segment of exponential decay of these oscillations (up to τ ≈ 5) can be well approximated by solution (2.2).
The period of decaying oscillations for the thus obtained approximate solution is always smaller than that for the
exact solution, which is explained by a manifestation of the fluid inertia in its near field. With increase in β2, the
difference between the periods of decaying oscillations of the exact and approximate solutions increases.

4. Decay for a Strong Effect of Viscosity. The features of nonspherical oscillations of a bubble for
i = 2 and −2 � j � 2 and large values of the parameter β2 are illustrated in Fig. 3 for the case β2 = 19.1 (which
corresponds, for example, to σ = 0.073 N/m, R = 4.5 · 10−6 m, ρ0 = 103 kg/m3, and ν = 10−4 m2/sec). In this
case, the results of calculations using methods II and IV coincide.

In the case of exact allowance for viscosity, the deviation a2j decreases almost exponentially up to τ ≈ 15.
As in the case of small values of β2 considered above, in the initial time interval, the fluid flow is affected primarily
by the forces Fσ and Fviscos. However, here Fviscos is markedly larger than Fσ, because of which a2j decreases
exponentially and without oscillations. In this case, for τ < 0.1, we have the relation Fσ + Fvort > Fviscos (Fσ

and Fvort are of the same sign), which initiates motion of the surface. Then, the indicated relation becomes
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opposite (Fσ + Fvort < Fviscos), which causes deceleration of the motion of the surface at 0.1 < τ < 15. In the
initial time interval 0.1 < τ < 15, the value of the force Fvort, as in the case of small values of the parameter β2, is
proportional to the rate of variation in a2j , but here Fvort plays the role of a complement of Fσ.

The position of equilibrium of the deviation a2j for the system of all acting forces is in the region of negative
values of a2j . This becomes appreciable for τ > 20, when the decrease in Fvort slows down significantly with
transition from the exponential law to a power law. The bubble shape passes through a spherical state, after which
it approaches this state from the other side with a deviation decreasing according to a power law under the action
of the force Fσ and its opposite force Fvort.

The evolution of the rotational fluid flow for β2 = 19.1 is illustrated in Fig. 4 for the case i = 2, j = 0, and
θ = π/4. Because of the strong effect of viscosity, the field of the vector ω for 0.1 < τ < 15 is nearly quasistatic
(curves 1–3 in the figure practically do not differ from the quasistatic solution). As for small β2, in this case the
motion of the surface influences the variation of ω only in the near field. In the far field, the vector ω varies with
time much more slowly (according to a power law) than in the near field (curves 4 and 5 in Fig. 4). Subsequently,
(for τ > 20), the force effect of the vorticity in the far field on the bubble surface becomes predominant, resulting
in a transition from the exponential law of variation of Fvort to a power law. Here the equilibrium position of the
deviation a2,0 is in the region of negative values for the same reason as for small β2: upon a single oscillations of
the surface throughout the process, the sign of Ωϕ/a

0
2,0 in the far field remains negative.

The segment of exponential decrease in a2j of the exact solution (up to τ ≈ 20) is well approximated by
solution (2.3) with a successful choice of C2, which is achieved in methods II and IV.

5. Estimation of the Approximate Methods of Accounting for Viscosity. A decrease in the viscosity
effect (for β2 < 0.096) in the exact solution leads to an increase in the time interval of decaying oscillations of a2j with
an amplitude decreasing almost exponentially. In this interval, method I provides increasingly good approximations
of the decay rate and the oscillations period. With increase in the viscosity effect (for β2 > 19.1) in the exact
solution, the time interval increases as a2j decreases almost exponentially. In this interval, method II gives a good
approximation. Between β2 = 0.096 and 19.1 there is a range of values of β2, for which the above-mentioned regimes
of variation in the deviation are not observed, which is due to the rapid manifestation of the vorticity effect in the
far field.

To estimate the approximate methods of accounting for viscosity, we use the following criteria. For small
values of β2, the approximate method describes the viscosity effect well enough if the rates of decrease in the
amplitudes of decaying oscillations of the deviation a2j in the exact and approximate solutions remain close up the
amplitudes decrease by two orders of magnitude. For large β2, the approximate method describes the viscosity effect
well enough if it satisfactorily approximates the decrease in the deviation up to the moment its value decreases by
two orders of magnitude.

Figure 5a gives a number of curves of the coefficient C2 versus the parameter β2. The solid curve corresponds
to the best (according to the above-mentioned criteria) approximation of the exact solution by the solution of
Eq. (2.1) with an appropriate choice of the coefficient C2 in it. In the region where a satisfactory approximation
using these criteria was not achieved for any values of C2 (in the range 0.11 < β2 < 2.1), a solid curve segment is
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absent (to avoid overloading the figure, instead of the relations Ci = const for approximate methods I–III, we give
the points indicating the corresponding values of Ci only for those values of βi for which these methods give the best
approximation of the exact method). Among methods I–IV, method IV gives a more satisfactory approximation
over a broad range of β2.

Similar dependences of the coefficient Ci on βi for i = 35 and 350 are given in Fig. 5b and c, respectively. It
is evident that for large values of i, method IV also gives the best approximation over a broad range of βi.

As i increases, the frequency and rate of decay of oscillations of aij increase for small βi and the rate of almost
exponential decrease in aij increases for large βi. With increase in i, the effect of the far field of vorticity on the
value of aij becomes appreciable for smaller values of aij ; in this case, the region of small values of βi, for which aij

decreases in the regime of decaying oscillations, becomes increasingly larger. The last circumstance allows one to
hope that with increase in i, the exact solution can be approximated by solution (2.2) over an increasingly broader
region of small values of βi. However, as a result of manifestation of the fluid inertia in its near field, the period
of decaying oscillations of the exact solution becomes much larger than that of the approximate solution (2.2). In
aggregate with the very fast decay of oscillations of aij (by more than two orders of magnitude for one period),
this makes it impossible to satisfy the above criterion of approximating the exact solution by solution (2.2) in the
regions of βi in Fig. 5b and c, where solid curves are absent.

Conclusions. For the decay of nonspherical oscillations of a bubble in a viscous fluid, it is possible to
distinguish two fields of fluid flow vorticity, which are different in the nature of effect on the bubble surface: near
and far fields. The near field is located near the bubble in a layer of thickness on the order of δ [δ is defined by
expression (2.4)], and the far field is outside this layer. The near field is determined by the motion of the interface.
Its effect on the bubble surface is proportional to the rate of variation in its shape. The far field and its effect on
the bubble surface are determined by the nonstationary nature of vorticity diffusion and practically do not depend
on the motion of the surface. The near field first has a predominant effect, after which the effects of the near and
far fields become comparable for some time, and then the far field begins to play a determining role. In the case
of the predominant effect of the near field and low viscosity, the bubble surface varies in the form of exponentially
decaying oscillations. If the viscosity is high, the deviation of the bubble from a spherical shape decreases almost
exponentially without oscillations. In the case of the predominant effect of the far vorticity field for any viscosity,
the deviation decreases according to a power law without oscillations. In this case, at each point, the deviation
from a spherical shape is always opposite to the initial one. In the region where the effects of the far and near
fields are comparable, the bubble surface for low viscosity varies in the form of decaying oscillations relative to the
nonspherical shape first with transition through a spherical state and then without it. For high viscosity, the bubble
surface varies without oscillations but with one transition through a spherical shape. The variation in the deviation
can be satisfactorily described by the approximate methods of accounting for viscosity ignoring the effect of the far
field of vorticity only in the cases of the predominant effect of the near field.

For not too low and not too high (moderate) viscosity, the approximate methods do not provide a satisfactory
description of its effect because of the very fast manifestation of the effect of rotational fluid flow in the far field (for
low-frequency harmonics) and/or because of the increasingly significant effect of the fluid inertia in its near field
(for high-frequency harmonics).
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Each of the approximate methods of accounting for viscosity is better than the others only in a narrow range
of parameters of the problem. An approximate method is proposed which provides a satisfactory Description of the
decrease in the deviation in a considerably broader range of parameters of the problem.
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